English
Ec. recta en el plano Ec. Exponencial Prog. aritméticas Límite en un punto Ec. Irracional Logaritmos Inecuaciones
Posición relativa dos rectas Ec. Logarítmica Prog. geométricas Límite en el infinito Asíntotas Continuidad Factor común
Gráfica y expresión analítica Sistemas 3 ecuaciones Prod. escalar Trigonometría Distancias Dominios  

Polinomios

Video explicativoTeorema del resto

Evaluar un polinomio
Evaluar un polinomio consiste en determinar qué valor toma el polinomio cuando la indeterminada (x) se sustituye por un número.
Consideramos el polinomio P(x)=2x3-5x+3 evaluar el polinomio en 1 consiste en sustituir la indeterminada por 1 (x=1) quedando P(1)=2·13-5·1+3=2-5+3=0.

Teorema del resto
El valor que se obtiene al evaluar un polinomio en x=a coincide con el resto de dividir ese polinomio por x-a.
Si dividimos un polinomio P(x) por x-a se obtendrá un cociente C(x) y un resto r.
En toda división el dividendo P(x) es igual al divisor x-a por el cociente C(x) más el resto r , es decir, P(x)=(x-a)·C(x) + r.
Al evaluar el polinomio en el punto se tiene
P(a)=(a-a)·C(a) + r , como a-a =0 entonces P(a) = r
Gracias a este teorema podemos usar la regla de Ruffini para evaluar un polinomio en un punto.

Evalúa el polinomio P(x)=2x3-5x+3 en x=1 usando la regla de Ruffini

P(1) = 0 ya que 0 es el resto de la división de P(x) entre x-a

Usando la regla de Ruffini, evalúa el polinomio en

Solución: