Para conocer la posición relativa de una recta y un plano estudiamos el rango de las matrices de coeficientes y ampliada asociadas al sistema que se forma con las ecuaciones generales de la recta y el planos. Así se presentan los siguientes casos:
Caso 1. El rango de la matriz de coeficientes y ampliada es 3 =>La recta y el plano son incidentes en un punto que es la solución del sistema.
Caso 2. El rango de la matriz de coeficientes es 2 y ampliada es 3 =>La recta y el plano son paralelos.
Caso 3. El rango de la matriz de coeficientes es 2 y ampliada es 2 =>El plano contiene a la recta.
|
|