Introducción
El concepto de divisibilidad surge ante la necesidad de repartir cantidades. En algunos casos este reparto es exacto y en otros no. Imaginemos que un padre deja en herencia sus 24 vacas a sus hijos. Dependiendo del número de hijos que tenga se podrá hacer un reparto equitativo o no sin que sobren o falten vacas, si tiene 3 hijos podrá dejar a cada uno 8 vacas, si tiene 4 podrá dejar a cada uno 6 vacas, pero si tiene 5 hijos no podrá dejar a cada uno de ellos igual número de vacas sin que sobre ninguna.
Concepto de divisibilidad
Se dice que un número
a es divisible por otro
b si existe un tercer número
c tal que
a= b·c y se nota
b | a "b divide a a".
Así 24 es divisible por 3 ya que 24 = 3·8, también divisible por 4 pues 24 = 4·6. En cambio, no es divisible por 5 al no encontrarse ningún natural que al multiplicarse por 5 se obtenga 24.
Análogamente se puede decir que un número a es divisible por otro b si la división euclídea es exacta, es decir, si al realizar la división el resto es 0.
Consecuencias de la definición:
Si
a, b y c son enteros
- 1|a para cualquier a entero, es decir, 1 divide a cualquier número entero
- Si a | b y b | a entonces a = ± b
- Si a | b entonces a|bx para cualquier x entero.
- Si a | b y a|c entonces a|(b+c)
- Consecuencia de b es que a| (pa+qb) donde p,q son enteros