English
Ec. primer grado Fracciones Potencias Enteros Factor común Monomios Aproximación Figuras planas Triángulos Rectángulos
Problemas - ecuaciones Triángulos Divisibilidad Ecuación de segundo grado Naturales Decimales Proporcionalidad Identidades Notables

Razones trigonométricas de un ángulo cualquiera

Relación entre razones trigonométricas
En este punto vamos a establecer relaciones entre ángulos del primer cuadrante (ángulos complementarios)o bien entre el primer cuadrante y los demás.

Ángulos que difieren 180º

Ángulos que difieren 180ºDados A y B tales que B - A= 180º . es decir, B=180º + A se cumple:
senA = -sen B, es decir, sen A = -sen(180º+A)
cosA = -cos B , es decir, cosA = -cos(180º+A)
de las dos igualdades anteriores se deduce que tgA = tgB

Esta relación permite averiguar las razones trigonométricas de cualquier ángulo del tercer cuadrante conocidas las razones trigonométricas del ángulo del primer cuadrante que difiere 180º y viceversa.



Se sabe que senA = 0.643 y cosA = 0.766

Determina el seno, el coseno y la tangente del ángulo que difiere 180º con A.

Solución: Seno = Coseno = Tangente =
(redondea la solución a tres cifras decimales)