English
Ec. recta en el plano Ec. Exponencial Prog. aritméticas Límite en un punto Ec. Irracional Logaritmos Inecuaciones
Posición relativa dos rectas Ec. Logarítmica Prog. geométricas Límite en el infinito Asíntotas Continuidad Factor común
Gráfica y expresión analítica Sistemas 3 ecuaciones Prod. escalar Trigonometría Distancias Dominios  

Distancias en el plano

Ejercicio resuelto
Distancias

Las subvariedades lineales del plano son los puntos y las rectas. Cuando hablamos de distancias entre variedades lineales en el el plano nos referimos a :

  • Distancia entre dos puntos: Dados dos puntos del plano A=(a1,a2) y B=(b1,b2), se determina la distancia entre estos dos puntos a través de la fórmula:
  • Distancia entre una recta y un punto: Dada una recta r:Ax+By+C=0 y P=(p1,p2) un punto no contenido en ella. La distancia entre el punto y la recta viene dada por:
  • Distancia entre dos rectas:Si dos rectas en el plano no son paralelas, se cortan en un punto y portanto la distancia entre amas será 0. Sólo tiene sentido estudiar la distancia entre dos rectas si éstas son paralelas. Sean r:Ax+By+C=0 y s:A'x+B'y+C'=0 dos rectas paralelas. Para hallar la distancia entre ambas se toma un punto de una de ellas, por ejemplo de r, y se calcula la distancia de ese punto a s.

Ahora prueba y Calcula la distancia entre el punto A=(4,-2) y la recta que pasa por el punto P=(-3,7) y tiene por vector de dirección v=(8,-6)

d=